
J. Fluid Mech. (2010), vol. 647, pp. 421–452. c© Cambridge University Press 2010

doi:10.1017/S0022112010000066

421

Turbulent drag reduction and multistage
transitions in viscoelastic minimal flow units

LI XI AND MICHAEL D. GRAHAM†
Department of Chemical and Biological Engineering, University of Wisconsin-Madison,

Madison, WI 53706-1691, USA

(Received 8 June 2009; revised 22 December 2009; accepted 28 December 2009)

The observation that addition of a minute amount of flexible polymers to fluid reduces
turbulent friction drag is well known. However, many aspects of this drag reduction
phenomenon are not well understood; in particular, the origin of the maximum drag
reduction (MDR) asymptote, a universal upper limit on drag reduction by polymers,
remains an open question. This study focuses on the drag reduction phenomenon in
the plane Poiseuille geometry in a parameter regime close to the laminar–turbulent
transition. By minimizing the size of the periodic simulation box to the lower limit for
which turbulence persists, the essential self-sustaining turbulent motions are isolated.
In these ‘minimal flow unit’ (MFU) solutions, a series of qualitatively different stages
consistent with previous experiments is observed, including an MDR stage where
the mean flow rate is found to be invariant with respect to changing polymer-related
parameters. Before the MDR stage, an additional transition exists between a relatively
low degree (LDR) and a high degree (HDR) of drag reduction. This transition occurs
at about 13 %–15 % of drag reduction and is characterized by a sudden increase
in the minimal box size, as well as many qualitative changes in flow statistics. The
observation of LDR–HDR transition at less than 15 % drag reduction shows for
the first time that it is a qualitative transition instead of a quantitative effect of the
amount of drag reduction. Spatio-temporal flow structures change substantially upon
this transition, suggesting that two distinct types of self-sustaining turbulent dynamics
are observed. In LDR, as in Newtonian turbulence, the self-sustaining process involves
one low-speed streak and its surrounding streamwise vortices; after the LDR–HDR
transition, multiple streaks are present in the self-sustaining structure and complex
intermittent behaviour of the streaks is observed. This multistage scenario of LDR–
HDR–MDR recovers all key transitions commonly observed and studied at much
higher Reynolds numbers.

1. Introduction
It has been experimentally observed that by introducing a minute amount of

flexible polymers (at concentrations of O(10–100) ppm by weight or even lower)
into a turbulent flow, the turbulent friction drag can be substantially reduced (Virk
1975; Graham 2004; White & Mungal 2008), resulting in a higher flow rate for
a given pressure drop. The reduction in friction factor can be as high as 80 % in
turbulent flows in straight pipe or channel geometries. Since its initial discovery in the
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Figure 1. Schematic Prandtl–von Kármán plot. Thin vertical lines mark transitions on the
typical experimental path shown as a thick solid line.

1940s (Toms 1948, 1977), the phenomenon of polymer drag reduction has been an
active area of study due to its practical and theoretical significance. It can obviously
be utilized to improve energy efficiency in various fluid transportation applications.
Moreover, unraveling the physical mechanism of the phenomenon in terms of the
complex interactions between turbulence and polymer molecules would not only
expand our knowledge of polymer dynamics in fluid flows but also provide additional
insight into the nature of turbulence itself.

Bulk flow data obtained from drag reduction experiments are often plotted in
Prandtl–von Kármán coordinates, i.e. as a plot of average velocity U+

avg ≡ Uavg/uτ

versus friction Reynolds number Reτ ≡ ρuτ l/η. (Here, ρ is the fluid density, η is
the total viscosity and l is a characteristic length scale of the flow geometry; the
friction velocity uτ ≡

√
τw/ρ is a characteristic velocity scale for near-wall turbulence,

where τw is the mean wall shear stress; the superscript ‘+’ denotes quantities non-
dimensionalized with inner scales, i.e. velocities scaled by uτ and lengths scaled by
η/ρuτ . We also define Re ≡ ρUl/η as the Reynolds number using the characteristic
bulk flow velocity U as the velocity scale and Wi ≡ λγ̇ as the Weissenberg number,
which is the product of polymer relaxation time λ and a characteristic shear rate
γ̇ . Note that γ̇ ∝ U/l.) A schematic Prandtl–von Kármán plot for Newtonian
and polymeric flow is shown in figure 1. Along a typical experimental path, where
the polymer solution system and the pipe/channel size are fixed, Re and Wi vary
simultaneously while their ratio, defined as the elasticity number El ≡ Wi/Re, remains
constant. One such path is drawn as a thick solid line in figure 1. With increasing Reτ ,
the flow system undergoes a series of transitions among several qualitatively different
stages, including laminar flow, laminar–turbulence transition, turbulence before the
onset of drag reduction (pre-onset), intermediate drag reduction and the maximum
drag reduction (MDR) asymptote, a term coined by Virk (1975). The boundaries
of each stage (i.e. the transition points) are marked with thin vertical lines for the
experimental path denoted by the thick solid line. The last stage (MDR) is so named
because it is invariant with changing polymer species, molecular weight, concentration
and geometric-confinement length scale (pipe diameter or channel height) (Virk 1975;
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Graham 2004; White & Mungal 2008). Experimental paths of different polymer
solution systems and/or pipe/channel sizes are sketched by dashed lines. Although
changing the polymer solution system and/or the confinement length scale, e.g. via
changes in El, would affect the slope in the intermediate DR stage as well as the
points of transition, all experimental paths collapse into a single straight line after
they reach the MDR stage. This line, commonly referred to as the Virk MDR
asymptote, sets the universal upper limit of drag reduction when polymer is used as
the drag-reducing agent. Note that once this asymptote is reached, the friction drag
is solely dependent on Reτ . This universality of the MDR stage, first recognized by
Virk, is widely regarded as the most intriguing problem in polymer drag reduction.

The study of polymer-induced drag reduction thus can be divided into several
important questions: (i) what is the mechanism by which polymers alter turbulence
and reduce drag; (ii) what are the qualitative changes underlying these multistage
transitions; and in particular (iii) why is there a universal upper limit on drag
reduction (MDR) and what is the nature of turbulence in that regime?

None of these questions has been completely answered to date; however,
advances in computer simulations of viscoelastic turbulent flows in the past
decade have substantially advanced the understanding of drag reduction. Beris
and coworkers pioneered the direct numerical simulation (DNS) of viscoelastic
turbulent flows (Sureshkumar & Beris 1997; Dimitropoulos, Sureshkumar & Beris
1998) using the FENE-P (Bird et al. 1987) constitutive equation. Most major
experimental observations in the intermediate drag reduction regime (after onset
and before MDR), including the onset of drag reduction, thickened buffer layer,
wider streak spacing and changes in the velocity fluctuations and Reynolds shear
stress profiles, were qualitatively reproduced. Since then DNS has been adopted
as a powerful tool to access the details of velocity and polymer stress fields and
thus to infer the mechanism(s) by which polymers reduce drag. By inspecting the
instantaneous snapshots of velocity fluctuations and polymer force fields, as well as the
correlation between the two, De Angelis, Casciola & Piva (2002) claimed that polymer
suppresses turbulence by counteracting the velocity fluctuations. (This mechanism is
also predicted by other means (Stone, Waleffe & Graham 2002; Stone et al. 2004; Li
& Graham 2007), as we discuss below.) Similar results on the velocity–polymer force
correlations were reported by Dubief et al. (2004, 2005), who showed that polymer
forces are anti-correlated with velocity fluctuations in the transverse directions, while
in the streamwise direction these two quantities are positively correlated in the
viscous sublayer and anti-correlated for the rest of the channel. On the basis of this
observation, they suggested that polymer molecules suppress the vortical motions and
meanwhile are stretched by these near-wall vortices; when they are convected towards
the wall to the high-speed streaks during the ‘sweeping’ events, they release the energy
back to the flow and thereby aid in the sustenance of turbulence.

Another common practice to interpret DNS data is to examine the transport
equations of kinetic energy and Reynolds stresses and describe the effects of polymer
in terms of the changes it causes to different contributions to the energy budgets. Min
et al. (2003b) proposed that the kinetic energy of the turbulent flow is transferred to
elastic energy via stretching of the polymer molecules very close to the wall; these
stretched molecules are lifted upward to the buffer and log-law layers to release energy
back to the flow. Ptasinski et al. (2003) evaluated the budget of each component of
the turbulent kinetic energy and found that polymer suppresses pressure fluctuations
and thus impedes energy transfer among different components via the pressure rate
of strain term in the Reynolds stress budgets.
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The studies mentioned above primarily rely on statistical representations of the
three-dimensional fields, quantities averaged in time as well as in the two periodic
dimensions. Although this approach addresses many quantities of interest, it does not
provide structural information about the turbulent motions. On the other hand, in
the near-wall region, where most drag reduction effects caused by polymer originate,
turbulent flows are known to be dominated by coherent structures (Robinson 1991) –
indeed these near-wall structures ‘export’ turbulent kinetic energy to the rest of
the flow (Jiménez & Pinelli 1999). Further understanding of the interplay between
turbulent structures and polymer dynamics requires the capability of isolating the
coherent structures from the complex turbulent background.

Information about these coherent structures can be extracted from DNS solutions
a posteriori. For example, the Karhunen–Loéve analysis (or proper orthogonal
decomposition) (Holmes, Lumley & Berkooz 1996) has been applied to viscoelastic
turbulent flows for this purpose (De Angelis et al. 2003; Housiadas, Beris & Handler
2005). Given a set of statistically independent snapshots from the time-dependent
turbulent flow, this method constructs a series of mutually orthogonal modes,
or eigenfunctions, which form an optimal decomposition of the original flow in
the sense that the leading modes always contain the largest amount of turbulent
kinetic energy. These studies showed that viscoelasticity modifies the turbulent flow
by increasing the amount of energy carried by these leading modes. However,
further study is still needed to connect this finding with the dynamic process of
polymer–turbulence interactions. More recently, conditional averaging has been used
to sample the predominant structures around certain local events that contribute
substantially to the turbulent friction drag (Kim et al. 2007). These results confirmed
that polymer inhibits vortical motions, both streamwise vortices in the buffer layer
and hairpin vortices farther away from the wall, by applying forces that counter
them. This is consistent with many other studies (De Angelis et al. 2002; Stone
et al. 2002, 2004; Dubief et al. 2005; Li & Graham 2007). Using these sampled
structures as the initial conditions for time integration, evolution of the hairpin
vortices was simulated (Kim et al. 2008), and it was found that viscoelasticity
not only suppresses the primary vortices but also prevents secondary vortices from
being created.

In the past decade, the discovery of three-dimensional fully nonlinear relative steady-
state solutions, or travelling wave (TW) solutions, to the Navier–Stokes equation has
made the a priori study of the coherent structures a reality. These solutions are
steady states of the Navier–Stokes equation typically in a reference frame moving at
a constant speed, and they are found in all canonical wall-bounded geometries (plane
Couette, plane Poiseuille and pipe) (Waleffe 1998, 2001, 2003; Faisst & Eckhardt
2003; Pringle & Kerswell 2007; Viswanath 2007). These TWs usually have a structure
composed of low-speed streaks straddled by streamwise vortices, which closely (in both
structure and length scales) resemble the recurrent coherent structures in near-wall
turbulence. In particular, the optimal spanwise box size of 105.51 wall units reported
for the TW solution found by Waleffe in the plane Poiseuille geometry (Waleffe 2003)
is remarkably close to the experimentally observed near-wall streak spacing of about
100 wall units (Smith & Metzler 1983). Furthermore, the Reynolds number (based on
laminar centreline velocity) at which these TWs first appear, Re = 977 is very close
to the experimentally observed value of 1×103 (Carlson, Widnall & Peeters 1982).
Transient structures that look very similar to these solutions have been experimentally
observed (Hof et al. 2004). In the context of drag reduction, past work has examined
one family of these TW solutions, the ‘exact coherent states’ (ECS; Waleffe 1998, 2001,
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2003) of viscoelastic turbulent flows in both plane Couette (Stone et al. 2002, 2004;
Stone & Graham 2003) and plane Poiseuille geometries (Li, Stone & Graham 2005; Li,
Xi & Graham 2006b; Li & Graham 2007). Not only do the viscoelastic ECS solutions
show drag reduction compared with their Newtonian counterparts, they also capture
many characteristics of drag-reduced turbulence, including reduced vortical strength
and changes in turbulence statistics. Consistent with DNS results (De Angelis et al.
2002; Dubief et al. 2005; Kim et al. 2007), the polymer influences the flow structures
and causes drag reduction in ECS by counteracting velocity fluctuations and vortical
motions (Stone et al. 2002, 2004; Li & Graham 2007). Viscoelasticity also changes
the minimal Re at which ECS exist; under fixed Re and with high enough Wi, these
solutions are totally suppressed by the polymer (Stone et al. 2004; Li et al. 2006b; Li &
Graham 2007). Based on these studies, a simple framework containing different stages
of the ECS solutions in the parameter space, which includes the laminar–turbulence
transition, the onset of drag reduction and the annihilation of ECS, was proposed (Li
et al. 2006b; Li & Graham 2007). With the hypothesis that the annihilation of ECS
is linked with MDR, this framework covered most key transitions in viscoelastic
turbulent flows.

Although viscoelastic ECS solutions do provide new insight into the problem of
drag reduction, they are only fixed points (i.e. steady states) in state space. Turbulence,
on the other hand, is a complex time-dependent trajectory, so further investigation
into the coherent turbulent motions requires the study of transient solutions. The
DNS studies mentioned earlier belong to this category, but in most of them, periodic
simulation boxes much larger than the characteristic length scales of the coherent
structures are used. Transient solutions obtained from that approach typically involve
a large number of coherent structures convoluted with one another and include the
long-range spatial correlations between them, which makes the identification and
analysis of individual coherent structures difficult. The most straightforward way to
isolate the transient solution corresponding to an individual coherent structure is the
‘minimal flow unit’ (MFU) approach: by limiting the simulation box to the smallest
size that still sustains the turbulent motion, this approach includes in the simulation
only the very essential elements of the self-sustaining process of turbulence. This
approach was proposed by Jiménez & Moin (1991) in the context of Newtonian
turbulent flows. The minimal spanwise box size in inner scales they found, L+

z ≈ 100,
is in very good agreement with the experimental measurement of the streak spacing
in the viscous sublayer (Smith & Metzler 1983), and this value is insensitive to the
change of Re. The minimal streamwise box size they reported is dependent on Re
and falls in the range of 250 � L+

x � 350, which is also consistent with experimental
measurements of the streamwise structure spacings (Sankaran, Sokolov & Antonia
1988). By comparing transient trajectories of MFU simulations with various TW
solutions in certain two-dimensional projections of the state space, Jiménez et al.
(2005) described the dynamical process of MFU in plane Poiseuille and Couette
geometries as a combination of relatively long-time stays in the vicinity of the TWs
(‘equilibrium’) and intermittent excursions away from these states (‘bursting’). A
different result is obtained in pipe flows: Kerswell & Tutty (2007) proposed several
correlation functions as quantitative measurements of the distance between transient
solutions and TWs, and observed that the transient turbulent trajectories only visit
the TWs about 10 % of the time and more complex objects in the state space, such
as periodic orbits, are necessary for a good approximation of the time-dependent
solutions. In the plane Couette geometry and using coordinates constructed with
upper branch ECS solutions and symmetry arguments, Gibson, Halcrow & Cvitanotić
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(2008) visualized the trajectories of MFU solutions together with the TW states and
their unstable manifolds in a geometrical view of the state space, with which the
connection between transient solutions and the dynamical structure formed by TWs
can been clearly seen.

All these studies on MFU are focused on Newtonian turbulent flows. Despite the
simplicity and power behind the MFU idea, this approach has not been directly
applied in the study of viscoelastic turbulence and drag reduction, partially due to the
additional degrees of freedom in the parameter space when polymer is introduced.
While Newtonian flows can be characterized by a single parameter Re, this is no longer
true in polymer solutions where polymer species, molecular weight and concentration
can also affect the flow dynamics and hence minimal box sizes. To search for the
minimal box size therefore becomes a highly computationally demanding task when
variations in all parameters are taken account of. Since the term MFU is often
used by other authors (e.g. Min et al. 2003b; Ptasinski et al. 2003; Dubief et al.
2005) to describe DNS in relatively small, but not necessarily minimal, boxes, we
emphasize here that in this paper, the term ‘minimal flow unit’ will refer exclusively
to a flow determined via a size minimization process. That is, for each parameter
setting, different box sizes are tested in order to determine a minimal size at which
turbulence persists. As we discuss in § 3, in the present study the minimization process
is only taken in the spanwise direction, while the streamwise box size is fixed at the
value of the Newtonian MFU. The goal of the current work is to find the MFU
of viscoelastic turbulence under a variety of parameters and observe the transitions
among different stages in terms of drag reduction behaviours.

A classical picture of the stages of viscoelastic turbulence includes pre-onset
turbulence, intermediate DR (after onset and before MDR) and MDR (figure 1).
Compared with the extensive studies of the intermediate DR regime summarized
earlier, the research on MDR is very limited. Though there is a certain degree
of understanding of the phenomenon of how polymer additives reduce turbulent
drag, the origin of the universal upper limit in the MDR stage remains very poorly
understood.

Early theory of Virk (1975) assumed that drag reduction only occurs in the buffer
layer; as viscoelasticity increases, the thickness of this layer increases, and MDR is
reached when the buffer layer dominates the whole flow geometry. This view is similar
to the conclusion drawn from the elastic theory of Sreenivasan & White (2000), that
at MDR the length scale of turbulence structure affected by polymer is comparable
with that of the flow geometry, and indeed this view is consistent with the results
presented below. Based on these views, phenomenological models have been developed
to predict mean velocity profiles, in which quantitative agreement with the Virk MDR
profile was reported (Benzi et al. 2006; Procaccia, L’vov & Benzi 2008). These models
have achieved various levels of success in capturing many experimental results;
however, discrepancies are still found with some other observations, as discussed
by White & Mungal (2008). In addition, all these theoretical studies are based on
average (in both space and time) quantities; the lack of information in these models
about turbulent coherent structures and their spatio-temporal behaviour limits their
ability to contribute to a physical picture of the dynamics underlying experimental
observations.

Among the few DNS studies on MDR, most efforts are dedicated to reproducing
the Virk mean velocity profile of MDR (Ptasinski et al. 2003; Dubief et al. 2005; Li,
Sureshkumar & Khomami 2006a): i.e. they look for parameter settings under which
the mean velocity profile of DNS is the same as or close to that of experimentally
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observed MDR at Re far from transition, which according to Virk (1975) is universal
in inner scales for a wide range of Re. The only exception to our knowledge is
the work of Min, Choi & Yoo (2003a), where the convergence of DR % with
increasing Wi is used to identify MDR. (The percentage of drag reduction, DR % ≡
(Cf,s − Cf )/Cf,s × 100 %, where Cf ≡ 2τw/(ρU 2

avg) is the friction factor of the
viscoelastic fluid flow, and Cf,s is the friction factor of the flow of pure solvent.) In
that study, DR % of several Wi is calculated with other parameters held fixed, and the
last two points on the high Wi end show almost the same DR %. As mentioned earlier,
MDR is a stage where the friction factor is only dependent on Re, and is unaffected
by variations in Wi and other polymer-related properties; therefore the problem
of MDR is the mechanism by which the same friction factor is preserved at fixed
Re with changing polymer parameters. This mechanism cannot be studied without
simulation data at MDR for a range of different parameter settings. Furthermore,
whether one should expect the same mean velocity profile in DNS studies as that of
Virk is uncertain: first, most experiments on MDR are conducted at relatively high
Re, and the lack of experimental measurements in the regime close to the laminar–
turbulence transition makes it hard to conclude whether the Virk profile is valid at
Re comparable to those in many DNS studies; second, the widely used FENE-P
constitutive equation is a highly simplified model for polymer molecules and how
well it can quantitatively predict the mean velocity at MDR is still unknown. In the
simulations of Min et al. (2003a), the limiting mean velocity profile at high Wi is
clearly lower than the Virk MDR profile; Dubief et al. (2005) also reported that the
Virk MDR profile is only obtained in a relatively small simulation box, and is not
found in large-box simulations; a small box is also used in the study of Ptasinski
et al. (2003). The only DNS study that predicts mean velocity profiles comparable
to Virk’s in large simulation boxes is that of Li et al. (2006a). However, they did
not report the universal convergence of the mean velocity. In the present work, we
identify MDR by using the criterion that the friction factor converges with increasing
Wi at fixed Re.

In recent years, an additional distinction was noticed within the intermediate DR
regime between a low degree of drag reduction (LDR) and a high degree of drag
reduction (HDR). This difference was investigated by Warholic, Massah & Hanratty
(1999) in their plane Poiseuille flow experiments, where differences between LDR and
HDR appear in several statistical quantities, including: (i) mean velocity profile: LDR
has the same log-law slope as Newtonian turbulent flows while HDR shows larger
slope of the log-law; (ii) streamwise velocity fluctuation profile: at LDR the magnitude
of fluctuations (in inner scales) increases with DR % and the location of the peak shifts
away from the wall, while at HDR fluctuations are greatly suppressed compared with
Newtonian turbulent flows; (iii) wall-normal velocity fluctuation profile: fluctuations
are suppressed in both cases but at LDR there is still a recognizable maximum in
the profile while at HDR the maximum is not observable; (iv) Reynolds shear stress
profile: at LDR the Reynolds shear stress decreases with DR but the profile retains
the same slope as that of Newtonian turbulent flows at large distance away from the
wall, while at HDR the Reynolds shear stress is almost zero across the channel and the
slope farther away from the wall also changes significantly. Some of these differences
have also been noted by several other groups through both experiments (Ptasinski
et al. 2003) and simulations (Min et al. 2003a; Ptasinski et al. 2003; Li et al. 2006a).
Most authors tend to treat these differences as quantitative effects of the percentage
of drag reduction DR %, and DR % ≈ 30 %–40 % is commonly adopted as the
separating point between LDR and HDR.
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As stated earlier, in this work we look for MFU solutions, i.e. time-dependent
solutions containing the minimal self-sustaining structures, of viscoelastic turbulent
flows. A wide range of parameter space is sampled in order to provide a complete
picture of the different stages in terms of drag reduction behaviours. Note that
although experimental measurements are typically made following paths with constant
El, along which Re and Wi are varying simultaneously (cf. figure 1), in this study
(as in many others, for example Sureshkumar & Beris 1997, Min et al. 2003a and
Li et al. 2006a), we focus on the behaviour as a function of Wi while holding Re
fixed. As shown by the vertical arrow in figure 1, one can still visit all different stages
of transition, on different experimental paths, by varying Wi under fixed Re; the
advantage of doing so is that the MDR stage can be easily identified as a plateau on
the bulk flow rate versus Wi curve. Our results show that all the stages of transition
previously reported from both experiments and full-scale DNS studies, including pre-
onset turbulence, LDR, HDR and MDR, are observed in these solutions in MFUs.
In particular, we indicate the changes in spatio-temporal structure that accompany
the LDR–HDR transition and identify a regime in which DR % converges with
increasing Wi, i.e. the MDR stage. We have varied all the parameters (except Re) in
the system and there is no statistically significant difference in the bulk flow rate with
changing parameters once the MDR stage is reached. This is, to our knowledge, the
first report of MDR in numerical simulations that matches its qualitative experimental
hallmark: the bulk flow rate is only a function of Re. In addition, all simulation results
reported in this paper are obtained at a Re lower than any previously published DNS
study, close to the laminar–turbulence transition. The fact that all these key stages
of viscoelastic turbulence (especially MDR) can be studied in the parameter regime
close to the laminar–turbulence transition, as predicted in earlier work (Li et al.
2006b; Li & Graham 2007), is important not only from the computational point
of view (computational cost grows rapidly with increasing Re) but also in terms of
the understanding of the turbulent structures (at Re this low, the near-wall coherent
structures dominate the whole flow geometry and are easier to observe). We also
need to mention that the highest DR % reached in our simulations only in the range
of 20 %–30 %, which is clearly below the separating point between LDR and HDR
identified in other studies. The fact that the LDR–HDR transition exists at such
low DR % indicates that it is a transition between two qualitatively different stages
during the drag reduction process instead of a quantitative difference associated with
the amount of drag reduction.

This paper is organized as follows. Section 2 summarizes the mathematical
formulation and numerical method. In § 3, we discuss in detail the process of finding
minimal flow units. Discussion of results (§ 4) is divided into several parts: we
start with an overview of the multistage-transition scenario in MFU solutions for
a variety of polymer-related parameters (§ 4.1); then we present flow and polymer
conformation statistics (§§ 4.2 and 4.3) at different stages for the sake of comparison
with existing publications; finally, in § 4.4 we study the spatio-temporal structure of
the self-sustaining dynamics, which provides insight into the changes in turbulence
dynamics accompanying the multistage transitions. The paper is concluded in § 5.

2. Formulation
2.1. Flow geometry and governing equations

We consider plane Poiseuille flow driven by a constant mean pressure gradient. The
x, y and z coordinates are aligned with the streamwise, wall-normal and spanwise
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directions, respectively. The no-slip boundary condition is applied at the walls and
periodic boundary conditions are applied in the x and z directions; the periods in
these directions are denoted by Lx and Lz. All lengths in the geometry are non-
dimensionalized with the half-channel height l of the channel and the velocity scale
is the Newtonian laminar centreline velocity U at the given pressure drop. Time t is
scaled with l/U and pressure p with ρU 2. The conservation equations of momentum
and mass give

∂v

∂t
+ v · ∇v = −∇p +

β

Re
∇2v +

2 (1 − β)

ReWi

(
∇ · τp

)
, (2.1)

∇ · v = 0. (2.2)

Here, Re ≡ ρUl/(ηs + ηp) (ρ is the total density of the fluid, and (ηs + ηp) is
the total zero-shear rate viscosity; hereinafter, the subscript ‘s’ represents ‘solvent’,
i.e. the Newtonian fluid, and the subscript ‘p’ represents the polymer contribution)
and Wi ≡ 2λU/l, which is the product of the polymer relaxation time λ and the
mean wall shear rate. Under this definition, the friction Reynolds number, defined as
Reτ ≡ ρuτ l/(ηs + ηp), can be directly related to Re: i.e. Reτ =

√
2Re. The viscosity

ratio β ≡ ηs/(ηs + ηp) is the ratio of the solvent viscosity and the total viscosity.
For dilute polymer solutions, 1 − β is approximately proportional to the polymer
concentration. The last term on the right-hand-side of (2.1) captures the polymer
effects on the flow field, where the polymer stress tensor τp is modelled by the
FENE-P constitutive equation (Bird et al. 1987):

α

1 − tr(α)

b

+
Wi

2

(
∂α

∂t
+ v · ∇α − α · ∇v − (α · ∇v)T

)
=

(
b

b + 2

)
δ, (2.3)

τp =
b + 5

b

⎛
⎜⎝ α

1 − tr(α)

b

−
(

1 − 2

b + 2

)
δ

⎞
⎟⎠ . (2.4)

In (2.3) and (2.4), polymer molecules are modelled as FENE dumbbells: two beads
connected by a finitely extensible nonlinear elastic (FENE) spring; the Peterlin closure
approximation yields a closed expression for α. The variable α is the non-dimensional
polymer conformation tensor α ≡ 〈 Q Q〉, where Q is the end-to-end vector of the
dumbbells. The parameter b defines the maximum extensibility of the dumbbells;
max (tr (α)) � b.

In this study, we fix Re = 3600 (Reτ = 84.85) and span the parameter space at
three different (β , b) pairs, (0.97, 5000), (0.99, 10 000) and (0.99, 5000), with a large
range of Wi for each β and b. The importance of β and b becomes apparent in
considering the extensibility parameter Ex, defined as the polymer contribution to the
steady-state stress in uniaxial extensional flow, in the high Wi limit. For the FENE-P
model, Ex = 2b(1 − β)/3β . For a dilute solution (1 − β 
 1), significant effects of
polymer on turbulence are only expected when Ex � 1. For the three sets of β and
b given above, the values of Ex are 103.09, 67.34 and 33.67, respectively.

2.2. Numerical procedures

The coupled problem of (2.1)–(2.4) is integrated in time with a third-order semi-
implicit time-stepping algorithm: linear terms are updated with the implicit third-
order backward differentiation method and nonlinear terms are integrated with the
explicit third-order Adams–Bashforth method (Peyret 2002). The continuity equation
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(see (2.2)) is coupled with the momentum balance (see (2.1)) using the influence matrix
method (Canuto et al. 1988). The alternating form is used to evaluate the inertia term
in (2.2): we switch between the convection form v ·∇v and the divergence form ∇· (vv)
upon each time step (Zang 1991).

The Fourier–Chebyshev–Fourier spatial discretization is applied in all variables
and nonlinear terms are calculated with the collocation method. The grid spacing for
the streamwise direction is δ+

x = 8.57, and in the spanwise direction we adjust the
number of Fourier modes according to the varying box width (as discussed in § 3)
to keep the grid spacing roughly constant in the range of 5.0 � δ+

z � 5.5; in the
wall-normal direction, 73 Chebyshev modes are used, which gives δ+

y,min = 0.081 at

the wall and δ+
y,max = 3.7 at the channel centre at Re = 3600. The time step size is

determined from the Courant–Friedrichs–Lewy condition (CFL) stability condition:
for the simulations reported in this paper, since the spatial grid spacing is fixed, a
constant time step δt = 0.02 is used.

An artificial stress diffusion term 1/(ScRe)∇2α is added to the right-hand side
of (2.3), a common practice to improve numerical stability in pseudo-spectral
simulations of viscoelastic fluids (Sureshkumar & Beris 1997; Dimitropoulos et al.
1998; Housiadas & Beris 2003; Ptasinski et al. 2003; Housiadas et al. 2005; Li et al.
2006a; Kim et al. 2007). In this study, we use a fixed value of the Schmidt number,
Sc = 0.5, which gives a constant artificial diffusivity of 1/(ScRe) = 5.56 × 10−4. The
magnitude of this artificial diffusivity is of the same order as that used by previous
studies of other groups, typically O(10−4); an additional diffusive term at this order of
magnitude should not affect the numerical solutions significantly while it helps to the
numerical stability greatly. With the introduction of this term, an additional boundary
condition is needed for (2.3), for which we used the solution without the artificial
diffusivity (the same is done in many other viscoelastic DNS studies, e.g. Sureshkumar
& Beris 1997): i.e. we update the α values at the walls without the artificial diffusivity
term first; using these results as the boundary values, we solve (2.3) with the artificial
diffusivity term added to update the α field for the rest of the channel.

3. Methodology: minimal flow units
The dimensions of the simulation box (L+

x , L+
z ) determine the longest wavelengths

captured in the numerical solutions. As introduced in § 1, the MFU approach finds
the transient solutions of (2.1)–(2.4) that correspond to the self-sustaining coherent
structures by finding the smallest box in which turbulent motions are sustained. Note
that this minimal box size is in general a function of all parameters in the system,
i.e. Re, Wi, β and b. Accordingly, the minimization process has to be performed for
each different parameter combination. In Newtonian MFUs, a roughly constant value
L+

z ≈ 100 is found for different magnitudes of Re whereas L+
x decreases with increasing

Re (Jiménez & Moin 1991). Experimentally measured steak spacings in turbulent flows
of polymer solutions are larger than the 100 wall units found for Newtonian turbulent
flows, and also increase with increasing DR % (Oldaker & Tiederman 1977; White,
Somandepalli & Mungal 2004). This observation is consistent with large-box DNS
results, where the length scales of spanwise spatial correlation functions increase
with increasing DR % (Sureshkumar & Beris 1997; De Angelis et al. 2003; Li et al.
2006a). Therefore, L+

z larger than that of the Newtonian MFUs is expected in our
search for viscoelastic MFUs. Viscoelasticity increases the correlation length scales
in the streamwise direction as well. In particular, Li et al. (2006a) reported that the
streamwise correlation length is increased by more than an order of magnitude when
DR % increases from 0 to 60 % or more. As a result, a significantly longer simulation
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Figure 2. Summary of simulation results: ‘Turbulent’ indicates that at least one simulation
run gives sustained turbulence within the given time interval (β = 0.97, b = 5000).

box is required to capture all these long-range correlations at high DR %. Consistent
with these studies, the streamwise and spanwise optimal length scales of viscoelastic
ECS solutions also increase with increasing Wi (Li & Graham 2007).

A rigorous search of MFUs should consider the parameter dependence of both L+
x

and L+
z , a task involving impractically large number of simulation runs. In this study,

we fix L+
x = 360 and focus on the variation of L+

z only. Although both length scales
depend on parameters, L+

z is arguably the quantity of more interest: the dominant
structures at the Re we study are the streamwise streaks and the streamwise vortices
aligned alongside them, thus L+

z directly restricts the streak spacing and the size of
the vortices whereas L+

x only imposes a periodicity in the longitudinal direction. The
fact that we are able to find sustained turbulence in various stages of transitions at
fixed L+

x = 360, which is in the range of Newtonian–MFU streamwise sizes (Jiménez
& Moin 1991), indicates that the minimal streamwise box size may not change as
much as the streamwise correlation length does.

Note that there is no widely accepted definition of ‘sustained turbulence’; in fact,
the question of whether turbulence sustains indefinitely after the laminar–turbulence
transition or eventually decays after some long but finite lifetime is still subject
to controversy, especially in pipe flow where the laminar state is always linearly
stable (Hof et al. 2006; Willis & Kerswell 2007). Here we take a pragmatic approach
to this issue by checking the persistence of turbulent motion within a fixed but fairly
long time interval. In all results reported in this paper, we use a statistically converged
MFU solution at an adjacent parameter (typically with a slightly different Wi and/or
L+

z ) as the initial condition and declare that sustained turbulence is found if the
turbulent motions do not decay after 12 000 time units, which is longer than the longest
natural time scale in the system (the viscous time scale, which is O(Re)). This is also
longer than the time intervals considered in many previous viscoelastic DNS studies
(Min et al. 2003a ,b; Housiadas et al. 2005; Li et al. 2006a). Figure 2 summarizes our
results with Newtonian runs and viscoelastic runs at β = 0.97, b = 5000. With the
exception of one Newtonian run where we use L+

z = 105.51 (this is the size of the ECS
solution when it starts to appear in an ‘optimal’ box; Waleffe 2003), at each Wi we
test different L+

z with an increment of ΔL+
z = 10, and whether sustained turbulence

is found or not is recorded by filled and open symbols, respectively. Consistent with



432 L. Xi and M. D. Graham

all previous studies, L+
z of the MFU has an obvious dependence on Wi and increases

almost monotonically with Wi. There is some roughness on the boundary between the
regions where turbulence persists and where it does not; however, this phenomenon
is a natural consequence of the sensitivity of turbulence in near-minimal domains to
initial conditions: independent of Reynolds number, with the same parameters and
box size, some initial conditions will become turbulent and some will not. Similarly,
some simulation runs with box sizes larger than the ‘minimal’ values still laminarize,
especially at high Wi. Results reported in the rest of this paper are primarily from
simulation runs with the minimal L+

z , i.e. on the boundary of filled and open symbols
in figure 2. The exceptions are those with L+

z < 140, where L+
z = 140 is used instead

of the actual minimal values, because it is found that at Re close to the laminar–
turbulence transition, when L+

z is relatively small, turbulence very often tends to
sustain near only one wall of the channel, while near the other wall the flow is almost
laminar. One explanation is when Re is very low, the size of the minimal coherent
structure is comparable to and sometimes larger than the half-channel height, so that
the channel is geometrically not high enough to accommodate structures at both walls.
This kind of ‘single-wall turbulence’ was also reported by Jiménez & Moin (1991) at
Re near the laminar–turbulence transition, and is highly undesirable in our study since
the flow statistics in this case are strongly biased by the laminar side. Empirically,
we find that this problem does not show up for L+

z � 140, and furthermore, in all
situations where we find drag reduction, the turbulence is statistically identical at both
walls. So strictly speaking, we are considering the minimal flow unit for sustained
turbulence at both walls. Finally, we note that intermittency between regimes of
laminar and turbulent flow was never observed in our MFU simulations. In all cases,
the flow either permanently laminarized or remained turbulent in the entire domain
for greater than 12 000 time units.

4. Results and discussion
4.1. Overview

In this section, we present turbulent MFU simulation results for viscoelastic flows
at various parameters. Most of the results are presented in the form of statistical
averages (averages in time as well as in either the x and z dimensions or all three
spatial coordinates depending on the figure). Each viscoelastic simulation run is 12 000
time units long and temporal averages are taken over the last 8000 time units. The
Newtonian simulation is 20 000 time units long and the last 16 000 time units are
included in the statistics.

The foremost quantity of interest with regard to drag reduction is the average
streamwise velocity, as plotted in figure 3 against Wi at different β and b. Because we
report simulation results at the minimum L+

z that sustains two-wall turbulence, the
box sizes for different data points in figure 3 are in general different; the specific box
size used for each data point is reported in figure 5. The corresponding degree of drag
reduction is marked on the right ordinate. The error bars on the plot show the error
estimates of the time-averaged quantity with the block-averaging method (Flyvbjerg
& Petersen 1989). All three curves from different β and b are qualitatively similar
and here we start by taking the β = 0.97, b = 5000 curve as an example. At Wi � 16,
the pre-onset stage, Uavg remains at the same level as the Newtonian turbulent flow.
After the onset of drag reduction at Wi ≈ 16, DR % increases monotonically with
Wi until Wi � 27, where it starts to level off. Within the range 27 � Wi � 30, Uavg

is approximately independent of Wi. Recall from § 1 that MDR is identified by the
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Figure 3. Variations of the average streamwise velocity with Wi at different β and b values
(average taken in time and all three spatial dimensions); the corresponding DR % is shown on
the right axis. Solid symbols represent points in the MDR stage; the horizontal dashed line is
the average of all MDR points.

convergence of the friction factor (subject to the statistical fluctuations in the data),
and thus Uavg in this plot, upon increasing Wi; this range of Wi hence corresponds
to the MDR stage for β = 0.97, b = 5000. Simulation runs with Wi > 30 at these
values of β and b all eventually become laminar within the 12 000 time-unit interval,
regardless of the L+

z chosen. On the remaining two curves, β = 0.99, b = 10 000 and
β = 0.99, b = 5000, the onset of drag reduction also occurs at about Wionset � 16,
but the rate of increase with Wi is different. The trend of changing slope is consistent
with changes in the extensibility number; higher Ex corresponds to steeper rise of
Uavg after onset. At the high Wi end, MDR stages can be identified in both curves
at 32 � Wi � 36 and 40 � Wi � 50, respectively, after which the flow laminarizes.
There is no statistically significant difference in Uavg among the MDR stages for all
three curves. Despite the range of parameters, all of them give DR % ≈ 26 %, i.e.
the friction drag at MDR is constant for a given Re in spite of variations in Wi, β

and b. This is, to our knowledge, the first time that this universal aspect of MDR is
reproduced in numerical simulations. Figure 3 summarizes the whole data set we will
present and discuss in the rest of the paper, from which we clearly see that the major
components of the transitions in viscoelastic turbulent flows, including the pre-onset
stage, intermediate DR and MDR are well-captured by the transient solutions in
MFUs, even at Re close to the laminar–turbulence transition.

Housiadas & Beris (2003) reported full-size DNS results at Reτ = 125 (Re = 7812.5),
β = 0.9, b = 900 (Ex = 66.67) and various Wi up to 125. With these parameters,
the onset occurs at Wionset ≈ 6, smaller than but of the same order of magnitude as
our computation in MFUs. Studies on ECS solutions (Li et al. 2006b; Li & Graham
2007) predict that Wionset is around 10 and decreases slowly with increasing Re. As to
the dependence of drag reduction on Wi, Housiadas & Beris (2003) found that Uavg

increases monotonically with Wi for the whole range of Wi they studied; however,
the slope drops greatly at Wi ≈ 50. They did not see a complete convergence of Uavg

for the range of Wi studied.
The mean velocity profiles U+ versus y+ of several typical points on the β = 0.97,

b = 5000 curve in figure 3 are plotted in figure 4; for comparison, the asymptotic lines
of the viscous sublayer (U+ = y+), the log-law layer of Newtonian turbulent flows
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Figure 4. Mean velocity profiles (β = 0.97, b = 5000).

(U+ = 2.44 ln y+ + 5.2) (Pope 2000) and the universal profile of MDR summarized
by Virk (1975) (U+ = 11.7 ln y+ − 17.0), are also shown on the same plot. All profiles
from our simulations collapse well on the viscous sublayer at y+ � 5. Farther away
from the wall, the Newtonian profile deviates from the U+ = y+ line in the buffer
layer. Even though Re is too low in the present simulations for the log-law layer to
be fully developed, the Newtonian profile still lies very close to the semi-empirical
log-law at y+ � 50. Among the viscoelastic cases, except that of Wi = 16 which
belongs to the pre-onset stage, the mean velocity profiles are all elevated compared
to the Newtonian case outside the viscous sublayer. The last two curves, Wi = 27
and Wi = 29, are selected from the MDR stage and collapse well onto each other,
although they are still notably lower than the Virk MDR profile. We will further
discuss the mean velocity profiles in § 4.2.

In figure 2, we presented the dependence of MFU box sizes on Wi at β = 0.97,
b = 5000; in figure 5, we show the L+

z values for all data points in figure 3. For
the reason explained in § 3, we use a minimum of L+

z = 140 if the actual minimal
box size is smaller than this value. This truncation affects at most up to Wi � 16
for β = 0.97, b = 5000 and β = 0.99, b = 10 000, and Wi � 24 for β = 0.99,
b = 5000, results which mostly belong to the pre-onset stage. At higher Wi, L+

z is
larger than 140 and should faithfully reflect the size of the minimal self-sustaining
coherent structures, which increases with increasing Wi with some uncertainty owing
to the initial-condition dependence (§ 3). A somewhat surprising finding is that this
trend persists in the MDR stage: L+

z changes with Wi despite the converged mean
velocity profile and flow rate. This result suggests that different points within the
MDR stage in figure 3 are distinguishable from one other, i.e. they are not identical
solutions, but rather different dynamical structures with the same average velocity.
We will further examine the similarities and differences among these solutions at the
MDR stage in the later parts of this paper. Comparing results at different β and b,
we observe that the values of L+

z in the MDR stage are close in magnitude and all
fall into the range of 200–260, about twice the size of a Newtonian MFU.

Previous discussions focused on the dependence of the bulk flow rate and the length
scales of MFUs on various parameters (Wi, β , b); here we examine in figure 6 the
existence of possible structure–flow rate correlations by plotting L+

z against DR %. It



Multistage transitions in viscoelastic MFUs 435

0 5 10 15 20 25 30 35 40 45 50 55
140

160

180

200

220

240

260

Wi

L+
z 

β = 0.97, b = 5000

β = 0.99, b = 10 000

β = 0.99, b = 5000

Figure 5. Spanwise box sizes used in this study for various parameters. Solid symbols
represent points in the MDR stage.

0 5 10 15 20 25 30
140

160

180

200

220

240

260

M
D

R
: 

2
6
 %

DR %

β = 0.97, b = 5000

β = 0.99, b = 10 000

β = 0.99, b = 5000

LDR

HDRL+
z 

Figure 6. Variations of spanwise box size at different DR %. Solid symbols represent points
in the MDR stage.

is interesting to note that the dependence of L+
z on DR % is insensitive to the changes

in β and b: data points from different β and b roughly fall onto a single relationship,
i.e. for any given DR % before the MDR stage, the corresponding values of L+

z

for different β and b are very close to one another. Note that the step size in our
MFU search is ΔL+

z = 10; the discrepancies among the L+
z ∼ DR % relationships

of different β or b are smaller than the methodological uncertainty. Figure 6 shows
that the structural length scale increases monotonically after the onset of DR until
MDR is reached at DR % ≈ 26 %, where L+

z seems to diverge: i.e. L+
z increases with

approximately constant DR % and eventually turbulence does not sustain even in
larger boxes.

Within the intermediate DR stage, an additional transition can be identified at
DR % ≈ 13 %–15 % by a sharp change in the slope of L+

z versus DR %. Note
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b = 5000, Wi: 32 ∼ 36 for β = 0.99, b = 10 000 and Wi: 40 ∼ 50 for β = 0.99, b = 5000).

that in figure 2, L+
z is about 140 wall units at the onset of DR, and after that

L+
z only increases by about 10 wall units when DR % reaches ∼13 %–14 %. From

DR % ≈ 15 % to just before MDR (DR % ≈ 25 %), L+
z increases from ∼160 to ∼200

wall units. This transition divides the intermediate DR stage into two parts, which
we will refer to as LDR and HDR below. As mentioned in § 1, the terms LDR and
HDR are commonly used by other authors for DR % � 35 % and DR % � 35 %,

respectively, whereas in this paper they are used to describe a qualitative transition
within the intermediate stage. This transition is further discussed below.

In summary, we have found transient viscoelastic turbulence solutions in MFU at
various Wi, β and b at a Re close to the laminar–turbulent transition, each of which
lasts more than 12 000 units in time. By studying the parameter dependence of the
bulk flow Uavg and the structural length scale L+

z , the whole multistage transition
sequence, including pre-onset, LDR, HDR and MDR, is observed, even though the
highest DR % we observe is less than 30 %.

4.2. Flow statistics

We start our discussion of the turbulent flow statistics by revisiting the mean velocity
profiles in figure 4. The six viscoelastic runs shown in that plot are selected from the
pre-onset (Wi = 16), LDR (Wi = 17, Wi = 19), HDR (Wi = 23) and MDR (Wi = 27,
Wi = 29) stages, respectively. The two curves at MDR overlap each other. In figure 7,
mean velocity profiles of all runs in the MDR stage, including those of other Wi
not shown in figure 4 and those at different β and b, are plotted together. All these
profiles from different Wi, β and b collapse well onto a single curve. This profile
is clearly lower than Virk’s MDR profile, but is universal with respect to different
polymer properties in our simulations. Within the intermediate DR stage (figure 4),
there is also a difference between LDR and HDR. The two LDR profiles (Wi = 17
and Wi = 19), although shifted upward compared with the Newtonian profile, still
keep roughly the same slope in the log-law layer. Most of the drag reduction occurs
in the buffer layer, while the log-law layer seems unaffected and stays parallel with the
Newtonian log-law, which is thus described as the ‘Newtonian plug’ by Virk (1975). In
the HDR stage (Wi = 23), consistent with the experimental observations of Warholic
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et al. (1999), a change in the log-law slope can also be noticed, although it is not as
large as those reported at higher Re, where DR % is much higher. The log-law slope
of the HDR profile is higher and lies between that of the Newtonian turbulence and
MDR.

To see this difference more clearly, in figure 8 we plot deviations in the gradient
of the mean velocity profiles from that of the Newtonian profile for several selected
runs. Note that with the constant pressure drop constraint, the mean wall shear stress
should be the same for all runs; in figure 8 the mean shear rate values at y+ = 0
of viscoelastic solutions are slightly higher than that of the Newtonian solution
because of shear thinning. Beyond the viscous sublayer, drag reduction is reflected
in the increase of the gradient. For LDR (Wi = 17, 19), this increase is mainly
localized in the buffer layer, beyond which the deviations are rather small. In HDR
and MDR, the change of gradient is large and clear across the channel, except of
course the viscous sublayer (y+ � 5). This difference between LDR and HDR is not
specific to the conditions shown in figures 4 and 8; it also exists for the other β, b

pairs considered. Figure 9 illustrates this fact, showing the magnitude of dU+/dy+,
measured at y+ = 40, versus DR % for all MFU runs. The dependence of mean
velocity profile gradient on DR % is roughly the same (within statistical uncertainty)
at different values of β and b. A distinction in this trend can be noticed between
relatively low and high DR %: significant increase of the gradient above the buffer
layer is only observed at DR % � 14 %, before which change in the gradient is small.
This change coincides well with the LDR–HDR transition as identified from figure 6.

Recall that in § 4.1, we identified the stages of LDR and HDR according to the
sudden change in the L+

z versus DR % relationship; here we demonstrated that this
transition corresponds well to the changes in the log-law slope observed by other
groups between low DR % and high DR % at higher Re (Warholic et al. 1999; Min
et al. 2003a; Ptasinski et al. 2003; Li et al. 2006a). This is why we choose to use the
terms ‘LDR’ and ‘HDR’, notwithstanding that our highest DR % is less than 30 %.
The fact that this transition can be observed at DR % ≈ 13 %–15 % suggests that
this corresponds to a qualitative transition in the process of drag reduction instead
of a quantitative effect of DR %. Consequently, we also expect that the DR % of the
LDR–HDR transition should be a function of Re.
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Similarly, a distinctive change also occurs in the Reynolds shear stress profiles
during the LDR–HDR transition. The deviations of −v′

xv
′
y/u

2
τ with respect to the

Newtonian profile are plotted in figure 10. In general, Reynolds shear stress is
suppressed with increasing drag reduction. Comparing the profiles of LDR (Wi = 17,
19) and HDR, MDR (Wi = 23, 29) in figure 10, one can note that at LDR, −v′

xv
′
y/u

2
τ

is suppressed mainly in the buffer layer (5 � y+ � 30), and in the region y+ � 40 the
deviation is barely noticeable; whereas at HDR and MDR, the deviation is substantial
across the entire channel except the viscous sublayer. This distinction between local
and global suppression of the Reynolds shear stress is also observed at the LDR–
HDR transitions at the other values of β and b we studied. As shown in figure 11,
at y+ = 40 (above the buffer layer), Reynolds shear stress is substantially suppressed
only after the LDR–HDR transition, which occurs at DR % ≈ 13 % ∼ 15 %. The
onset of HDR occurs where the dynamics of drag reduction change from being local
in the buffer layer to global across the entire channel.
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Figure 11. Magnitudes of Reynolds shear stress at y+ = 40. Solid symbols represent points
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Warholic et al. (1999) reported that the magnitude of Reynolds shear stress is
significantly lower in HDR than in Newtonian flow, and it eventually drops to
almost zero at DR % > 60 %. In some other studies, however, non-zero (though
still significantly smaller than Newtonian) Reynolds shear stresses were reported
even for cases with more than 70 % drag reduction (Warholic et al. 1999; Min
et al. 2003a; Ptasinski et al. 2003; Li et al. 2006a). Based on our study, these
seemingly contradictory results can be reconciled: figure 11 shows that (above the
buffer layer) although −v′

xv
′
y/u

2
τ starts to be obviously suppressed after the LDR–

HDR transition, it remains at the same order of magnitude as the Newtonian value
even in our MDR stage. Therefore, the quantitative magnitude of −v′

xv
′
y/u

2
τ is not the

key difference between LDR and HDR; it instead might be affected by both DR %
and Re. It is the location where −v′

xv
′
y/u

2
τ is suppressed that qualitatively indicates

the transition. Indeed, despite the difference in the magnitude of Reynolds shear
stress reported in those studies (Warholic et al. 1999; Min et al. 2003a; Ptasinski
et al. 2003; Li et al. 2006a), one common observation is that Reynolds shear stress is
substantially suppressed near the channel centre only after the LDR–HDR transition.
This agreement is yet another indication that this transition, initially identified in the
L+

z versus DR % plot (figure 6), corresponds to the LDR–HDR transition observed
in other studies at much higher Re.

The root-mean-square (r.m.s.) velocity fluctuation profiles are shown in figures 12
and 13. After the onset of drag reduction, the streamwise velocity fluctuations
(figure 12) increase with Wi until MDR is reached; meanwhile the peak of the profile
moves away from the wall, reflecting the thickening of the buffer layer. Both the
wall-normal (figure 12) and spanwise (figure 13) velocity fluctuations are suppressed
with increasing Wi.

As to the LDR–HDR transition, the spanwise velocity fluctuation profiles show
most notable differences between these two stages. In figure 13, the LDR profiles
resemble that of the Newtonian turbulence in their shape, though they are lower in the
magnitude. In particular, one can notice two bulges at y+ ≈ 16 and y+ ≈ 46 between
which the curves are concave. This subtle concavity is absent in the HDR and MDR
stages, where this part of the curve is roughly straight. Therefore, unlike turbulence in
LDR where the spanwise velocity fluctuations are almost uniformly suppressed across
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Figure 12. Profiles of r.m.s. streamwise and wall-normal velocity fluctuations (β = 0.97,
b = 5000). LDR: Wi = 17, 19; HDR: Wi = 23; MDR: Wi = 29.
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Figure 13. Profiles of r.m.s. spanwise velocity fluctuations (β = 0.97, b = 5000). LDR:
Wi = 17, 19; HDR: Wi = 23; MDR: Wi = 29.

the channel, in the HDR and MDR stages more suppression occurs in the buffer layer
and the lower edge of the log-law layer. This is also observed in the data at other
values of β and b, but has not previously been reported in the literature. Meanwhile,
Warholic et al. (1999) reported experimentally that there is a maximum in the wall-
normal velocity fluctuation profiles when DR % � 35 %, whereas when DR % is
high, the maximum becomes unrecognizable. It is unclear though whether this is a
quantitative effect of the substantially suppressed wall-normal velocity fluctuations,

since at high DR % their v′2
y

1/2
/uτ profile is one order of magnitude smaller than

the Newtonian profile, and the noise of the measurements can be comparable with the
velocity fluctuation magnitude. In our results, there is a very subtle maximum in the
Newtonian profile as well. As Wi increases, this bulge decreases in height and shrinks
in size, with the lower edge moving away from the wall. At the HDR and MDR
stages, the profile is almost flat after the initial rising region near the wall and the
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Figure 14. Profiles of r.m.s. velocity fluctuations and Reynolds shear stress at 15 different
MDR states (Wi: 27 ∼ 30 for β = 0.97, b = 5000, Wi: 32 ∼ 36 for β = 0.99, b = 10 000 and
Wi: 40 ∼ 50 for β = 0.99, b = 5000).

bulge becomes unrecognizable. This effect, however, is not as obvious as the changes
in the spanwise velocity fluctuations.

It has also been reported experimentally that notable differences between low DR %
and high DR % can be observed in the streamwise velocity fluctuations (Warholic

et al. 1999): when DR % � 35 %, v′2
x

1/2
/uτ increases with DR % and the peak of

the profile moves away from the wall; at high DR %, v′2
x

1/2
/uτ is greatly suppressed

compared with the Newtonian flows. However, as shown in figure 12, this non-

monotonicity is not observed in our MFU simulations; instead, our v′2
x

1/2
/uτ profiles

at different stages all follow the former (low DR %) case in experiments. DNS studies
from other groups reported contradictory results regarding whether or not this non-
monotonic trend exists in streamwise velocity fluctuations (Min et al. 2003a; Ptasinski
et al. 2003; Li et al. 2006a). The origin and significance of this discrepancy are not
understood, but the fact that in those studies, comparisons between different DR %
were made under different constraints (constant-flow rate versus constant-pressure
drop) may have contributed to the complexity in this issue. Our observation (that the
trend is monotonic) is consistent with Li et al. (2006a), where the constant-pressure
drop constraint was also applied.

We have shown earlier that in the MDR stage, the mean velocity profiles converge
to a single curve (figure 7); here we resume the discussion of the turbulence statistics
in this stage. In figure 14, we plot the r.m.s. velocity fluctuations (left axis) and
Reynolds shear stress (right axis) profiles for all the simulation runs in the MDR
stage (corresponding to the solid data points in figure 3) with a variety of Wi, β

and b. The profiles of wall-normal and spanwise velocity fluctuations converge for
different parameters. The situation of the streamwise component is a bit complicated:
the profiles from different parameters are very close to one another near the wall
and reach maxima at very similar values in the buffer layer, while beyond the buffer

layer, they spread out. To detect any possible parameter dependence of v′2
x

1/2
/uτ , we

have examined the distributions of its magnitudes with respect to Wi, β and b. Even

though the v′2
x

1/2
/uτ profiles do not merge in the MDR stage, there is no identifiable

trend of dependence of v′2
x

1/2
/uτ on any of the parameters: v′2

x

1/2
/uτ neither increases

nor decreases with increasing Wi consistently in the MDR stage, and the same applies



442 L. Xi and M. D. Graham

10 20 30 40 50 60 70 800

0.05

0.10

0.15

0.20

0.25

tr
(α

)/
b

Wi = 16.0, L+
z = 140

Wi = 17.0, L+
z = 150

Wi = 19.0, L+
z = 150

Wi = 23.0, L+
z = 180

Wi = 27.0, L+
z = 210

Wi = 29.0, L+
z = 250

y+

Figure 15. Normalized profiles of the trace of the polymer conformation tensor (β = 0.97,
b = 5000). Pre-onset: Wi = 16; LDR: Wi = 17, 19; HDR: Wi = 23; MDR: Wi = 27, 29.

for the other two parameters (β and b). Therefore, we believe that this dispersion

of v′2
x

1/2
/uτ profiles in figure 14 is a result of statistical uncertainty: it might take

much longer simulation runs to obtain reliable averages on the streamwise velocity
fluctuations than the other quantities we have discussed.

As to the Reynolds shear stress, the convergence is very good over most of the
channel except in a small region near the maxima of the profiles at y+ ≈ 30; this
discrepancy, as we have also examined, is again due to statistical uncertainty.

4.3. Polymer comformation statistics

We now turn to the statistics of the polymer conformation tensor. Figure 15 shows
the mean profiles of the trace of the polymer conformation tensor α, which physically
corresponds to the square of the end-to-end distance of the polymer chains, normalized
by its upper limit b, for several selected Wi with β = 0.97 and b = 5000. Perhaps
the most interesting observation is that although it is expected that polymers are
more highly stretched as Wi increases, this trend goes on in the MDR stage. The
two curves belonging to the MDR stage in figure 15 do not overlap; that is, tr(α)
keeps on increasing with Wi even though the mean velocity (as well as many other
velocity statistical quantities) converges. This trend is confirmed in figure 16, where the
average tr(α) normalized by b is plotted against Wi for all simulation runs reported
here. Data points in the MDR stage are filled. For every β and b, tr(α)avg/b increases
monotonically with Wi: the slope is relatively low at Wi ∼ O(1); after the onset
of drag reduction (Wi � 16), the curves are steeper and tr(α)avg/b roughly rises in
straight lines; tr(α)avg/b continues to increase at approximately constant slope even
after MDR is reached. In addition, the ranges of tr(α)avg/b at the MDR stages of
different β or b are far apart from one another even though their Uavg is very close;
for example, at β = 0.99 and b = 10 000, tr(α)avg/b is more than twice as large as
that of β = 0.99 and b = 5000, and almost three times the magnitude at β = 0.97
and b = 5000. Similar to our findings, Housiadas & Beris (2003) reported in their
DNS studies that while the increase of mean velocity slows down at high Wi, tr(α)
continues to increase with Wi at about the same rate.
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Figure 16. Averaged trace of the polymer conformation tensor (average taken in time and
all three spatial dimensions). Solid symbols represent points in the MDR stage.

Another observation from figure 15 is that the profiles change shape with increasing
Wi. At relatively low Wi, tr(α) decreases monotonically with distance away from the
wall y+. At higher Wi, the profile becomes non-monotonic with a maximum some
distance from the wall (in the buffer layer). This distance increases with increasing Wi.
This observation can be explained kinematically. The process of near-wall polymer
stretching is a combined effect of shear flow in the viscous sublayer and extensional
flow in the buffer layer. The former is relatively more effective in stretching polymers
at low Wi and the latter dominates at higher Wi; consequently, the peak location
reflects the shift of the dominant kinematic effect. Although the separation between
the peak location of tr(α) and the wall in figure 15 might be thought to coincide with
the LDR–HDR transition, this agreement is totally fortuitous; unlike the changes in
turbulent flow statistics we studied earlier, this accordance between the Wi where the
peak shifts away from the wall and the Wi at the LDR–HDR transition is specific
to the choice of β = 0.97 and b = 5000. The lack of correlation between the peak
location of tr(α) profiles and DR % and the increasing tr(α) in the MDR stage where
the mean velocity converges suggests that the mean deformation of polymer chains
is a process independent of the transitions among LDR, HDR and MDR.

Polymers exert their influence on the flow field through the polymer force term,
f p = 2(1 − β)/(ReWi)(∇ · τp). Consequently, one might intuitively expect f p to
saturate in the MDR stage, instead of α or τp , so that polymer would contribute
equally to the momentum balance (see (2.1)) despite the differences in the magnitude
of polymer stress. However, f p profiles do not converge in the MDR stage either,
although the discrepancies of f p among different parameters are significantly smaller
than those of tr(α).

4.4. Spatio-temporal structure

Above we discussed statistical representations of the velocity and polymer
conformation fields of MFU solutions during the multistage transitions. As these
solutions contain the structural information of the essential self-sustaining process of
turbulence, we turn here to the spatial and temporal nature of the flows. Figure 17
shows the spatial–temporal patterns in z and t of the shear rate ∂vx/∂y at the lower
wall y = −1, at fixed streamwise location x = 0, taken from one selected run for
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Figure 17. Dynamics of the self-sustaining turbulence structures at various values of Wi
(Re = 3600, L+

x = 360, β = 0.97, b = 5000). Density plots show spatio temporal patterns of
the wall shear rates (∂vx/∂y taken at x = 0; two periodic images are shown for each case.
Note that the mean value is 2 owing to the fixed pressure gradient constraint. Line plots show
(left axis and thick line) spatially averaged velocity and (right axis and thin line) average wall
shear rate (average taken in the spanwise direction).
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Figure 18. For legend see next page.

each of Newtonian turbulence, LDR, HDR and MDR. (The choice of x is arbitrary
since the system is translation-invariant in x.) The distribution in the z direction of
the wall shear rate is recorded every time unit and plotted in greyscale in the axes of
t and z+. A length of 8000 time units of statistically stationary turbulence is included
in the plot. To aid interpretation, two periods in z are shown. Along with the wall
shear rate patterns, the spatially averaged velocity Ubulk is also shown. Note that the
time dependence of Ubulk is physically meaningful only in minimal flow units; in a
full-scale DNS solution, the spatial average of any quantity should in principle be
the same as the ensemble average and should be invariant with time. Also plotted is
the z average of the wall shear rate ∂vx/∂y as a function of time; note that the time
average of this quantity is 2 owing to the fixed pressure gradient constraint.

Figure 18 shows representative snapshots of the velocity field during different stages.
Two snapshots are selected for each simulation run that is shown in figure 17, marked
by (R) and (L) in their captions according to the criterion to be discussed below. In
each of them, isosurfaces for two quantities are plotted in a three-dimensional view of
the simulation box. The flat translucent sheets with pleats are isosurfaces of streamwise
velocity vx , taken at the magnitude of 0.6vx,max , where vx,max is the maximum value
of vx in the domain for the given snapshot. The pleats correspond to low-speed
streaks, where slowly moving fluid near the wall is lifted upward towards the centre.
The dark tube-like objects are the isosurfaces of a measure of the streamwise-vortex
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(e) HDR (R): Wi = 23, L+
z = 180;

t = 7700, vx = 0.31, Q2D = 0.026.

( f ) HDR (L): Wi = 23, L+
z = 180;

t = 7300, vx = 0.31, Q2D = 0.0089.

(g) MDR (R): Wi = 29, L+
z = 250;

t = 8500, vx = 0.27, Q2D = 0.018.

(h) MDR (L): Wi = 29, L+
z = 250;

t = 8900, vx = 0.31, Q2D = 0.0050.

Figure 18. Typical snapshots of the flow field (Re = 3600, L+
x = 360, β = 0.97, b = 5000). (R)

denotes snapshots chosen from ‘regular’ turbulence, and (L) denotes snapshots of ‘low-shear’
events. Translucent sheets are the isosurfaces of vx = 0.6vx,max; opaque tubes are the isosurfaces
of Q2D = 0.3Q2D,max . The values of vx and Q2D for each plot are shown in its caption. Note
that (L) states typically have much lower Q2D values than (R) states. The bottom wall of each
snapshot corresponds to the wall shear rate patterns shown in figure 17 at corresponding time.

strength Q2D , whose definition we now describe. We apply a modified version of the
Q-criterion of vortex identification (Jeong & Hussain 1995; Dubief & Delcayre 2000;
Wu, Xiong & Yang 2005); that is by comparing the magnitudes of the vorticity tensor
and the rate-of-strain tensor, one can identify the local regions manifesting strong
vortical motions. For low Re, the buffer layer structure dominates the turbulence, so
we use the Q-criterion in the y–z two-dimensional plane only to focus on vortices
aligned along the mean flow direction. Specifically, we compute the two-dimensional
versions of the rate-of-strain tensor Γ 2D ≡ (1/2)(∇v2D + ∇vT

2D) and the vorticity
tensor Ω2D ≡ (1/2)(∇v2D − ∇vT

2D), where ∇v2D ≡ (∂vy/∂y, ∂vz/∂y; ∂vy/∂z, ∂vz/∂z);
then calculate the quantity Q2D ≡ (1/2)(‖Ω2D‖2 − ‖Γ 2D‖2). Positive magnitudes of
Q2D would indicate regions having streamwise vortices; in figure 18, the isosurfaces
of Q2D = 0.3Q2D,max are shown, where Q2D,max is the maximum value of Q2D in the
domain for the given snapshot. Note that this varies substantially among different
snapshots; the isosurface value for each image is reported in the caption.

A typical coherent structure of Newtonian turbulence contains a pair of streamwise
vortices staggered alongside one sinuous low-speed streak, e.g. the structure at the
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bottom wall of figure 18(a). The dynamics around a single streak are sufficient to make
a self-sustaining process: the vortices on different sides of the streak rotate in opposite
directions so that the low-speed fluid near the wall between them is lifted upward,
forming the streak; instabilities of the streak will bring forth streamwise dependence
into its morphology, which through nonlinear interactions further maintains the
vortices (Hamilton, Kim & Waleffe 1995; Waleffe 1997; Jiménez & Pinelli 1999). In
figure 17, low-speed streaks correspond to minima of the wall shear rate distributions
in the z direction, which in the contour plots are observed as dark stripes. The
Newtonian MFU solution (figure 17a) contains one almost continuous streak during
the whole time range shown, which confirms that a self-sustaining process involving
one streak (and the vortices around it), lasting for a very long lifetime, dominates the
dynamics of the transient solution. With the translation invariance in z, the streak
is not bound to any position and is free to drift in the spanwise direction. However,
there are still certain periods (e.g. 6200 � t � 6800 and 7900 � t � 8600) when the
streak appears to be quiescent and stays at the same z location for a fairly large
amount of time; in some other time intervals the streak can be very active and move
rapidly in the transverse direction (e.g. 5000 � t � 6200 and 7300 � t � 7900).
The LDR stage (figure 17b) is qualitatively similar to the Newtonian case with one
continuous streak dominating the dynamics for a long time period. In the particular
case we show, there is only one break point, at t ≈ 7400, where the first streak decays
and meanwhile a second streak is growing. The minimal spanwise box size to sustain
turbulence is however slightly larger, which indicates that the self-sustaining coherent
structure is wider in size, resulting in an increase of streak spacing. In HDR, as shown
in figure 17(c), the number of streaks in the minimal box varies between one and two,
and complex dynamics are seen from time to time. These dynamics are also evident
in MDR (figure 17d ) where more frequently it involves two streaks although a single
streak can sometimes also be found. These complex activities and dynamics of the
streaks are observed through various events that change the topology of the streak
patterns, including emergence of new streaks (e.g. t ≈ 11 300, z+ ≈ 120 in figure 17c
and t ≈ 6500, z+ ≈ 30 in figure 17d ), decay of existing streaks (e.g. t ≈ 8200, z+ ≈ 25
in figure 17c), merger of multiple (typically two) streaks into one (e.g. t ≈ 6600,
z+ ≈ 160 in figure 17d ) and division of one streak into multiple streaks (e.g. t ≈ 9600,
z+ ≈ 125 in figure 17d ). This transition from single-streak dynamics to multiple-streak
dynamics at the LDR–HDR transition suggests that the underlying self-sustaining
mechanism of turbulence may have changed; complex dynamics involving interactions
between streaks might be essential in sustaining turbulent motions in HDR and MDR
stages.

Recall in figure 6 that when the LDR–HDR transition occurs, the dependence of
L+

z on DR % undergoes an abrupt transition; this can be interpreted based on the
observations in figure 17. In the LDR stage, the underlying self-sustaining process
is qualitatively the same as for the Newtonian turbulence, involving the nonlinear
interactions between a single low-speed streak and the streamwise vortices on its both
sides (Hamilton et al. 1995; Waleffe 1997; Jiménez & Pinelli 1999). Viscoelasticity
reduces the drag by weakening the vortical motions (Li et al. 2006b; Li & Graham
2007) and the increase of L+

z is caused merely by the enlargement of the coherent
structures (Li & Graham 2007). After the LDR–HDR transition, viscoelasticity is
strong enough to suppress the ‘Newtonian’ coherent structures (as predicted by our
earlier ECS study; Li, Xi & Graham 2006b; Li & Graham 2007), and the process
involving a single isolated streak cannot sustain turbulence for a very long time (see
the relatively shorter streak segments in figures 17c and 17d ). As a result, a new
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self-sustaining process involving inter-streak interactions arises, the details of which
have yet to be elucidated. Therefore, the increase of L+

z in the HDR stage involves
both the contribution from the enlarged structure by viscoelasticity and the extra
room needed to accommodate more streaks.

As to the turbulent dynamics reflected by the evolution of Ubulk and the mean wall
shear rate shown in figure 17, one interesting observation is that there are certain
moments in the self-sustaining process when the change of Ubulk can be inferred by
the shear rate at the wall. Specifically, during these moments, the wall shear rate
is low in magnitude and its curve remains relatively smooth for O(100) time units;
meanwhile, the mean velocity increases steadily. Examples of these events include
t ≈ 4400 of figure 17(a), t ≈ 4200, 4900 and 8000 of figure 17(b), t ≈ 6200, 6900,
7300, 8800 and 10 100 of figure 17(c) and t ≈ 5500, 5800, 8100, 8800, 9700, 11 000,
11 300 and 11 600 of figure 17(d ). By comparing these temporal evolution plots with
the spatial–temporal wall shear rate patterns shown in figure 17, one finds that these
events usually correspond to moments when the patterns are relatively smooth; i.e.
the wall shear rate has relatively small variance in both space and time. Additionally,
these events appear to occur more often as DR % increases, although it is not easy
to quantify their frequency of occurrence at this point. To a first approximation, the
correlation between bulk velocity and wall shear rate can be interpreted as follows:
since the driving force of the flow, the mean pressure gradient, is fixed, the change of
the total momentum in the flow unit is mainly determined by the rate momentum is
consumed at the wall; when shear rate at the wall is low, there is less momentum being
transferred to the wall by viscous shear stress, which makes it easier to accumulate
momentum in the flow unit and increase the mean velocity.

In the three-dimensional views of velocity fields shown in figure 18, one of the
two snapshots presented for each run is taken from one of these ‘low-shear’ events,
marked as (L) in the caption, and the other is from a regular turbulence interval,
marked as (R). The typical snapshot of ‘regular’ Newtonian turbulence (figure 18a)
has been discussed above. At LDR (figure 18c), the structure is qualitatively similar
with one sinuous streak near each wall surrounded by streamwise vortices. At HDR
(figure 18e) and MDR (figure 18g), this type of streak-vortex structure is still observed,
though very often two streaks can be observed near each wall. Compared with these
snapshots of ‘regular’ turbulence (figures 18a, 18c, 18e and 18g), those taken during
the ‘low-shear’ events (Figures 18b, 18d, 18f and 18h) in general have much lower
vortex strength, as reflected by lower Q2D magnitudes. Meanwhile, the streaks are
less wavy in shape: the x-dependence of the streak morphology is weak. As discussed
above, these ‘low-shear’ events occur more frequently as DR % increases; therefore,
we expect that in a full-scale system the probability of observing relatively straight
streaks is higher in HDR and MDR stages, while at lower DR % the streaks should
be mostly wavy. This is consistent with the observation by Li et al. (2006a) in
full-scale DNS that long straight streaks are more predominant when the HDR
regime is reached. The nature of these ‘low-shear’ events is as yet unclear. How
these events are triggered and what roles they play in the self-sustaining processes
of turbulence will be important for further understanding of drag reduction by
polymers.

5. Conclusions
In this study, we consider viscoelastic turbulent flows under a variety of conditions.

These flows are obtained from the minimal flow unit approach and represent the
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essential coherent structures for the self-sustaining process of turbulent motions. The
box size is minimized in the spanwise direction with fixed streamwise wavelength. The
minimal box size to sustain turbulence increases with increasing Wi for fixed β and b,
and the correlation between this length scale and the bulk flow rate is approximately
universal with respect to varying β and/or b at fixed Re = 3600 (figure 6). At this value
of Re, all key stages of transition reported previously in experiments and simulations
at much higher Re are observed in the MFU solutions, including pre-onset turbulence,
LDR, HDR and MDR. The discovery of the LDR–HDR transition at the current
low Re and especially at a relatively low DR % indicates that this is a qualitative
transition between two stages of viscoelastic turbulent flows and not a quantitative
effect of the amount of drag reduction. Drag reduction reaches its upper limit at
DR % ≈ 26 % in the MDR stage, where DR % converges upon increasing Wi. This
upper limit is universal with respect to different β and b, and it is to our knowledge
the first time that the universality of MDR with respect to polymer parameters is
examined in numerical simulations. After the MDR stage, which persists for a finite
range of Wi at given β , b and Re, the flow returns to the laminar state.

The LDR–HDR transition is associated with a change in the underlying dynamics
of the self-sustaining process of turbulence. At the LDR stage, the essential coherent
structure to sustain turbulence is similar to that of Newtonian turbulence, which
consists of one undulating low-speed streak and its surrounding counter-rotating
streamwise vortices. At the HDR stage, the essential structure is more complicated
and involves more than one streak; inter-streak interactions may be important.
Nevertheless, the streamwise streaks and vortices are still the major components of
the self-sustaining process in all turbulent stages in our MFU solutions. This change
of the basic structure is reflected in the length scale of the MFU, resulting in a
sudden change in the slope of the L+

z ∼ DR % curve; the minimal box size increases
more sharply with DR % at the HDR stage compared with the LDR stage. Several
qualitative changes in flow statistics are observed during this transition, including
(i) change of the log-law slope in the mean velocity profile, from the Newtonian
log-law to a larger slope; (ii) disappearance of the concavity in the r.m.s. spanwise
velocity fluctuation profile; and (iii) change in the location of the suppression of the
Reynolds shear stress profile, from locally (in the buffer layer) at LDR to globally (in
most of the channel) at HDR.

At the MDR stage, the mean velocity profiles converge onto a single curve at
the given Re. The Reynolds stresses either converge to a limit or at least lose
their dependence on Wi, β and b, and fluctuate within certain ranges. In contrast,
the polymers are increasingly stretched by the flow with increasing Wi despite the
converged flow rate, and the polymer conformation tensor continues to depend on Wi,
β and b. In the MDR stage, the spatio-temporal flow structure seems similar to that
of the HDR stage; the self-sustaining process also shows complex dynamics involving
multiple streaks and time intervals containing relatively weak turbulent fluctuations.
The minimal length scale in z to sustain turbulence keeps on increasing with Wi in
the MDR stage; however, the length scale of the MFU solutions in the MDR stage
under different β and b all approximately falls in the range of 200 � L+

z � 260.
This study shows that the drag reduction process with varying parameters is

composed of several key stages of transition, which are present in both fully developed
turbulence (according to other studies) and the laminar–turbulence-transition regime.
The mechanism of these transitions, especially the LDR–HDR transition and the
existence of a universal MDR, is as yet unclear. Spatio-temporal images of turbulent
coherent structures suggest that a shift of the underlying self-sustaining mechanism
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occurs at the LDR–HDR transition. Further study of this change will be important
in understanding drag reduction behaviours in HDR and MDR stages. In addition,
the capability of isolating the minimal transient solutions, and the knowledge that
these transitions can all be studied in the near-transition regime, will greatly facilitate
future insight into the polymer drag reduction phenomenon.
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Jiménez, J., Kawahara, G., Simens, M. P., Nagata, M. & Shiba, M. 2005 Characterization of
near-wall turbulence in terms of equilibrium and ‘bursting’ solutions. Phys. Fluids 17, 015105.
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